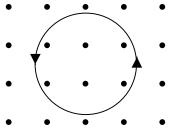
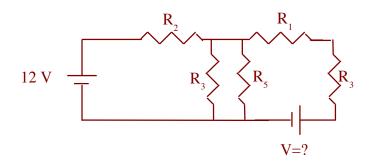
Physics 201

Name


Exam 2 – Capacitance, Circuits and Magnetism

March 5, 2009


This is a closed book examination. However, you may use a 8.5" x 11" sheet of paper with your own notes during this exam. There is extra scratch paper available. Please <u>explain</u> your answers. Your explanation is worth 3/4 of the points on multiple-choice questions.

- 1) [4 PTS] What is the net force on a neutron (q = 0) with velocity $\vec{v} = 50 m/s \hat{i}$ traveling through a region of space with $\vec{E} = 40V/m\hat{j}$ and $\vec{B} = 1.5T\hat{k}$?
- 2) [4 PTS] Two light bulbs (A and B) are connected in series. Bulb A is twice as bright as bulb B. What must be true?
 - a) $2R_{B}=R_{A}$
 - b) $\sqrt{2} I_{\rm B} = I_{\rm A}$
 - c) Bulb A receives the current from the battery first (closest to positive terminal)
 - d) Bulb B receives the current from the battery first (closest to positive terminal)
 - e) $2R_A = R_B$
 - f) $\sqrt{2} I_A = I_B$
- 3) [4 PTS] You connect three resistors to a battery as shown in the diagram to the right. Which resistor has the most current flowing through it? R_2
 - a) R₁
 - b) R₂
 - c) R_3
 - d) Which ever one has the smallest resistance.
 - e) Which ever one has the largest resistance.
 - f) The current is the same through all of them.
- 4) [4 PTS] You are measuring the voltage across a capacitor with a charge Q on it. How does the energy change when you insert a dielectric with K=2 into the capacitor.
 - a) The energy decreases.
 - b) The energy does not change.
 - c) The energy increases.

- 5) [4 PTS] The light bulbs in the circuit to the right have different resistances, $R_1 = 2R_2 = 4R_3$. Which bulb is brightest (uses the most power)?
 - a) **R**₁
 - b) R₂
 - c) R₃
 - d) All the light bulbs are of equal brightness since they have the same voltage across them.
- 6) [4 PTS] A charged particle is moving in a uniform magnetic field (coming out of the page) as shown in the figure to the right. What type of particle would follow the path indicated?
 - a) Proton
 - b) Neutron
 - c) Electron
 - d) Photon

- 7) [12 PTS] A charged capacitor (C=3.2 mF) is connected to a resistive load (R=100 Ω) at time t=0s. The capacitor is initially charged to 5.1 Volts.
 - a) What is the time constant for this circuit?
 - b) What is the initial energy stored in the capacitor?
 - c) How much energy is left in the capacitor at time $t=\tau$?
 - d) What is the power used by the load as a function of time?
- 8) [12 PTS] Solve for the unknown source voltage, the current through resistor R_1 and the power used by resistor R_5 in the diagram below. The current through R_2 is 1,666 mA while $R_1 = 8 \Omega$, $R_2 = R_5 = 2 \Omega$ and $R_3 = 4 \Omega$.

